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1.0 INTRODUCTION 

David Hestenes (ref 1) presented a definitive formulation of 

the geometric algebra G(3) for problems in 3-space R(3) with 

applications to mechanics.  Reference 1 also presents a 

historical review of the development of a geometric algebra and 

collects many previously published results (ref 2). 

Baylis, Huschilt, and Wei (ref 3) presented a dissertation 

on geometric algebra in 3-space without wedge products.  They 

accomplished this by using the dual relation between the wedge 

product and the cross product of Gibbs vector analysis: 

<a>A<b> = i <a>X<b>, t1) 

where i is the unit pseudoscalar, the Gibbs cross product <a>X<b> 

is the Hodge dual of the wedge product <a>A<b>, and we denote 

vectors by angular brackets.  Reference 3 also carried over the 

Gibbs dot product, etc.  Thus, Baylis, Huschilt, and Wei (ref 3) 

were able to define geometric products of general elements, 

multivectors, of G(3) by assuming the results of Gibbs vector 

analysis, identifying bivectors (pseudovectors) with cross 

products, and enumerating certain features of the pseudoscalar i. 

The approach of Reference 3 obviates the need for 

enumerating the properties of wedge products, which are simply 

inherited from the properties of cross products, etc. 

Furthermore, it turns out that all the properties of the 

geometric product in G(3) may be expressed in a simple way in 

terms of Gibbs dot and cross products.  Of course, when one 

builds the features of Gibbs vector analysis into the geometric 



product, one cannot show (as is done in Reference 1) how 

identities in Gibbs vector analysis follow from properties (e.g., 

associativity) of the geometric product. 

In this report, the methods of Baylis, Huschilt, and Wei for 

geometric algebra in R(3) are implemented.  The report is 

organized as follows: Section 2, Theoretical Background, reviews 

the properties of sums and products of the elements of the 8- 

dimensional algebra G(3).  Section 3, Examples, demonstrates 

standard features of geometric products and defines inverses for 

general multivectors in G(3) using the package.  Section 4, 

Applications, demonstrates the utility of the geometric algebra 

code for the solution of multivector equations and to rotation 

operations in 3-space.  The Appendix contains the MV package, 

which defines data types "MV" for multivectors and "vec" for 

vectors, and presents a code for (1) performing standard Gibbs 

vector analysis; (2) the geometric product in G(3); and (3) 

special coordinate specific (vectors in list form) calculations. 

2.0 THEORETICAL BACKGROUND 

A general element of a geometric algebra is referred to as a 

multivector.  A multivector m in G(3) is generally a sum of four 

parts, 

m=a0 + a + iA + iA0, (2) 

where a0 and A0 are scalars, and a and A are vectors. The scalar 

part of m (a0) is said to be of grade 0, the vector part of m (a) 

of grade 1, the bivector part of m (i A) of grade 2, and the 



pseudoscalar part of m (i A0) of grade 3.  Terms of higher grade 

vanish in G(3).  The vector A is said to be the dual of the 

bivector part (i A).  The unit pseudoscalar i is of grade 3, it 

commutes with all multivectors, its square is -1, and it has 

geometrical content; it is not a complex number.  Scalars and 

vectors are defined over R(l) and R(3), respectively.  Hestenes 

refers to pure grade r multivectors as r-blades (e.g., pure 

vectors are referred to as 1-blades). 

As discussed in References 1 through 3, the r-blade parts of 

multivectors have geometrical significance.  One can associate 

vectors (1-blades) with directed lines, bivectors (2-blades) with 

oriented areas, and pseudoscalars (3-blades) with oriented 

volumes. 

2.1 Dot and Wedge Products 

In this report, the wedge product of vectors is defined in 

terms of the cross product through Eq. (1), and the dot product 

is carried over directly from Gibbs vector analysis.  In general, 

for q>r, the dot product of a q-blade with an r-blade is the 

grade (q-r)-part of the geometric product of the blades and the 

wedge product is the grade (q+r)-part of the geometric product of 

the blades.  Although we include a discussion of wedge products 

in this work, it is not incorporated into the package. 

2.2 Geometric Products of Multivectors With Scalars and 

Pseudoscalars 

Scalars and pseudoscalars commute with all multivectors. 

Pseudoscalar geometric products change grade and are analogous to 



multiplication by imaginary numbers, and scalar geometric 

products are analogous to multiplication by reals on C(l). 

Geometric products with a pseudoscalar are always equal to dot 

products, and the product of an r-blade with a pseudoscalar is a 

grade (3-r)  blade.  Thus, 

c m = m c, (3) 

(c i) m = m (c i) = c m.i = c i.m, (4) 

where m is an arbitrary multivector, c is an arbitrary scalar, 

(c i) is an arbitrary pseudoscalar, and i is the unit 

pseudoscalar. 

2.3 Products of Vectors With Vectors in G(3) 

The geometric product of vectors in G(3) is defined as 

<a><b> = <a>.<b> + i <a>X<b> = (a,b) + i <a>X<b>,       (5) 

where the grade 0 part of the product <a>.<b> = (a,b) is the 

Gibbs scalar (or dot) product of <a> and <b>, and the grade 2 

part of the product is i(<a>X<b>) where <a>X<b> is the Gibbs 

vector (or cross) product of <a> and <b> (a vector quantity). 

Employing the properties of the dot and cross products we see 

that 

<b><a> = <b>.<a> + i <b>X<a> = (a,b) - i <a>X<b>       (5a) 

which implies that 

(a,b) = <a>.<b> = (<a><b> + <b><a>)/2 (5b) 

and  i <a>X<b> = <a>A<b> = (<a><b> - <b><a>)/2. (5c) 

From the properties of the Gibbs dot and cross, the scalar 

<a><a> = (a,a) > 0, (5d) 

if <a> is not a zero vector. 



2.4 Products Involving Bivectors (Pseudovectors) in G(3) 

As indicated in Eq. (2), a general bivector can be expressed 

as (i A) where A is a vector (the Hodge dual of i A).  Thus, 

since i commutes with all multivectors, the properties of 

geometric products of bivectors can be deduced from those of 

products involving vectors. 

2.4.1 Product of a Vector and a Bivector in G(3) 

(i<A>)<b> = i <A><b> = i (<A>.<b> + i <A>X<b>) 

= i <A>.<b> - <A>X<b> = i (A,b) - <A>X<b>.        (6a) 

We see that the geometric product of vectors with bivectors 

yields the sum of a pseudoscalar and a vector part.  Forming 

<b>(i<A>) and using the properties of Gibbs dot and cross 

products as with Eq. (5), we can pick off the dot and wedge 

products: 

(i<A>).<b>  = -<A>X<b> = ((i<A>)<b> - <b>(i<A>))/2     (6b) 

and  (i<A>)A<b> = i(<A>.<b>)= ((i<A>)<b> + <b>(i<A>))/2.     (6c) 

2.4.2 Product of Bivectors in G(3) 

(i<A>)(i<B>) = -<A><B> = -(<A>.<B> + i<A>X<B>) (7a) 

We see that the geometric product of bivectors is equal to the 

negative of the product of their dual vectors.  We can pick off 

the dot and wedge products: 

(i<A>).(i<B>) = -<A>.<B> 

= ((i<A>)(i<B>) + (i<B>)(i<A>))/2 (7b) 

and  (i<A>)A(i<B>) = 0. (7c) 

The bivector part (which is neither dot nor wedge) is seen to be 

given by the commutator product of (i<A>) and (i<B>).  To every 



plane, one can associate a "unit" bivector, which is a square 

root of -1; its Hodge dual is a directed normal to the plane. 

2.5 The Algebra of G(3) 

Beyond the properties described above, the algebra has the 

following features: addition of multivectors is commutative, 

distributive, and associative.  The geometric product of 

multivectors is distributive and associative.  There exist unique 

multivectors 0 and 1, which serve as identity elements for 

addition and geometric products, respectively, i.e., 

m + 0 = m and 1 m = m 1 = m (8) 

for a general multivector m. 

Every multivector m has a unique additive inverse, i.e., 

(-m): 

m + (-m) = 0. (9) 

As stressed in References 1 to 3 and in contrast to Gibbs dot and 

cross products, all non-zero blades and most non-zero 

multivectors have unique multiplicative inverses with respect to 

the geometric product.  (We illustrate this feature in Section 

3.) 

3.0 EXAMPLES 

This section gives examples of applications of the geometric 

algebra package to obtain standard results in G(3).  Many of 

these "results" have been built into the code; some are not so 

obvious.  The development of code for inverses might more 

appropriately be considered part of Section 4, Applications; in 



any case, the expressions for multivector inverses are essential 

parts of the code and are incorporated into the implementation 

package (Appendix). 

3.1 Dot, Cross, and Bivector Products 

3.1.0 Define some vectors and pseudovectors 

In[72]:= 

spa = MakeMV[0, a, 0, 0]; spb = MakeMV[0, b, 0, 0]; 

spB = MakeMV[0, 0, B, 0]; spA = MakeMV[0, 0, A, 0]; 

3.1.1 Dot- (wedge-) product is defined in terms of min (max) 

grade terms in a GP: 

3.1.1.0 For a vector <a> and grade r multivector Br: 

<a>.Br = (<a>Br - (-l)r Br<a>)/2  and 

<a>ABr = (<a>Br + (-l)r Br<a>)/2 

The grade of <a>.Br is r-1; the grade of <a>ABr is r+1. 

3.1.1.1 One could define commutator and anticommutator products 

of arbitrary multivectors as: 

ln[76]:= 

com[a_, b_] := (GP[a, b] - GP[b, a])/2 

ln[77]:= 

anti[a_, b_] := (GP[a, b] + GP[b, a])/2 

3.1.2 Vector-vector products: 

3.1.2.1 Wedge product: The commutator of vectors yields a 

pseudovector:   com[<a>/<b>] = <a>A<b> = i <a>X<b>. 

In[78]:= 

com[spa, spb] 

Out[78]= 



0+(0)+i(<a>X<b>)+i(0) 

3.1.2.2 Dot product: The anticommutator of vectors yields a 

scalar:   anti[<a>,<b>] = <a>.<b> = (a,b). 

In[79]:= 

anti[spa, spb] 

Out[79]= 

(afb)+(0)+i(0)+i(0) 

3.1.3 Vector-pseudovector products: 

3.1.3.1 Dot product: Commutator of vector and a pseudovector 

yields a vector:  com[<a>,i <A>] = i <a>A<A> = -<a>X<A>. 

In[80]:= 

com[spa, spA] 

Out[80]= 

0+(-<a>X<A>)+i(0)+i(0) 

3.1.3.2 Cross (wedge) product: The anticommutator of a vector and 

a pseudovector yields a pseudoscalar: 

anti[<a>,i<A>] = i <a>.<A> = i (a,A). 

In[81]:= 

anti[spa, spA] 

Out[81]= 

0+(0)+i(0)+i((a,A)) 

3.1.4.1 The commutator product of pseudovectors yields a 

pseudovector.  It is neither a dot nor a cross product of 

pseudovectors; its grade is 2.  (The wedge product would be grade 

4; thus, it is 0.)  The commutator product of bivectors is given 

by -1 times the cross (wedge) product of their dual vectors: 

8 



com[i<A>,i<B>] = -com[<A>,<B>] = -<A>A<B> = -i <A>X<B>. 

In[82]:= 

com[spA, spB] 

Out[82]= 

-(A,B)+(0)+i(-<A>X<B>)+i(0) 

3.1.4.2 Exercise: Multivectors of the form a0 + i<q>, where a0 is 

a scalar and <q> is a vector, are called spinors.  Show that 

spinors form a 4-dimensional subalgebra of G(3). 

3.2 Check on Associativity of Geometric Products 

3.2.1 Define three arbitrary multivectors. 

In[83]:= 

spa = MakeMV[aO, a, A, AO]; spb = MakeMV[bO, b, B, BO]; 

spc = MakeMV[cO, c, C, CO]; 

3.2.2 To get an idea of what is involved in the geometric product 

of three multivectors, let's exhibit the vector part of such a 

product: 

In[85]:= 

vector[GP[spa, GP[spb, spc]]] 

Out[85]= 

bO cO <a> - BO CO <a> + (b,c) <a> - (B,C) <a> - BO cO <A> - 

bO CO <A> - (b,C) <A> - (B,c) <A> + aO cO <b> - AO CO <b> - 

(a,c) <b> + (A,C) <b> - AO cO <B> - aO CO <B> + (a,C) <B> + 

(A,c) <B> + aO bO <c> - AO BO <c> + (a,b) <c> - (A,B) <c> - 

AO bO <C> - aO BO <C> - (a,B) <C> - (A,b) <C> - 

CO <a>X<b> - cO <a>X<B> - BO <a>X<c> - bO <a>X<C> - 

cO <A>X<b> + CO <A>X<B> - bO <A>X<c> + BO <A>X<C> - 



AO <fc»X<c> - aO <t»X<C> - aO <B>X<c> + AO <B>X<C> 

3.2.3 A demonstration that GP[ml,GP[m2 ,m3] ] -GP[GP[ml, m2],m3] = 

0. 

In[86]:= 

Timing[GP[spa, GP[spb, spc]] - GP[GP[spa, spb], spc]] 

Out[86]= 

{62.56 Second, 0+(0)+i(0)+i(0)} 

3.3 Elementary Properties of Involuntary Transformations of 

Products 

3.3.1 Exercise: For arbitrary multivectors a and b, show that 

spatialReversal[a b] = spatialReversal[b] spatialReversal[a]. 

3.3.2 Exercise: For arbitrary multivectors a and b, show that 

hermitean[a b] = hermitean[b] hermitean[a]. 

3.3.3 Exercise: For arbitrary multivectors a and b, show that 

spatiallnversionfa b] = spatialInversion[a] spatialInversion[b]. 

3.4 Inverse of General Multivectors 

3.4.1 Inverses of combinations of scalars and psuedoscalars: 

As in the case of complex scalars, for i the unit pseudoscalar, 

(aO + i cO)(aO - i cO) = aO2 + cO2 is a real non-negative scalar: 

ln[87]:= 

GP[MV[aO, 0, 0, cO], MV[a0, 0, 0, -cO]] 

Out[87]= 
2     2 

aO  + cO +(0)+i(0)+i(0) 

Thus, unless a02+c02 = 0, the inverse of aO + i cO is given by: 

ln[88]:= 
inverse[MV[aO_, 0, 0, c0_]] := 

(l*MV[a0, 0, 0, -cO])/(aOA2 + c0^2) 

10 



In[89]:= 
inverse[MV[aO_, 0, 0, 0]] := MakeMV[l/aO, 0, 0, 0] 

In[90]:= 
inverse[MV[0, 0, 0, cO_]] : = MakeMV[0, 0, 0, -cO^(-l)] 

3.4.2 Inverses of general elements: 

For an arbitrary multivector v, 

GP[spatialReversal[v], v] = a "complex" scalar: 

ln[91]:= 
v = MakeMV[a0, a, A, A0]; 

ln[92]:= 
GP[spatialReversal[v], v] 

Out[92]= 
2     2 

aO  - A0  - (a,a) + (A,A)+(0)+i(0)+i(2 (aO A0 - (a,A))) 

Thus, unless the "complex" scalar, 

GP[spatialReversal[v], v] vanishes, the inverse of an arbitrary 

multivector v exists and is given by: 

ln[93]:= 

inverse[x_MV] := Module[{rx = spatialReversal[x]}, 

GP[inverse[Chop[GP[x,rx]]],rx]]] 

(We include Chop to handle numerical cases.) 

3.4.3 Example: Inverse of a spinor is a spinor: 

In[94]:= 

inversespa = inverse[spa = MakeMV[a0, 0, A, 0]] 

Out[94]= 
aO <A> 
 +(0)+i(-( ))+i(0) 

2 2 
aO  + (A,A) aO  + (A,A) 

In[95]:= 

GP[inversespa, spa] 

11 



Out[95]= 

l+(0)+i(0)+i(0) 

ln[96]:= 

GP[spa, inversespa] 

Out[96]= 

l+(0)+i(0)+i(0) 

4.0 APPLICATIONS 

This section shows how the implementation of the geometric 

algebra of G(3) can be used to obtain the solution of multivector 

equations and to develop an algebraic treatment (without 

matrices) of rotations in R(3).  The choice of applications is, 

of course, arbitrary. 

4.1 Solution of Multivector Equations 

4.1.0.1 Hestenes suggests elegant techniques for solving 

multivector equations, which involve replacing dot and wedge 

(i.e., cross) products by appropriate combinations of geometric 

products so as to convert to multivector equations to the form 

ml <x> = m2 and then applying the inverse of ml. 

4.1.0.2 Here we approach the same problems by a more "brute 

force" technique, viz., (1) Get equation to be solved in 

multivector form.  (2) Step 1. Form geometric products with the 

vectors and/or (duals to the) pseudovectors in the problem. 

Solve the various grade terms for the dot and wedge (cross) 

products to be eliminated. (We use the fact that if m=0, where m 

is a multivector, then b m = 0, where b is an arbitrary 

12 



multivector.) (3) Step 2. Plug in the dot and wedge products and 

solve for x. 

4.1.1 Hestenes 2-1 Exercises (1.3) 

Solve alpha <x> + <x>.<b> <a> = <c>  for <x>. 

Get lhs of equation to be solved in multivector form.  Use 

MVscalar[vl,v2] to get dot product of vectors, etc.  (The 

anticommutator product would also yield the dot product of 

vectors.) 

In[97]:= 

spx = MakeMV[0, x, 0, 0]; spa = MakeMV[0, a, 0, 0]; 

spb = MakeMV[0, b, 0, 0]; spc = MakeMV[0, c, 0,0]; 

ln[100]:= 

lhs = alpha*spx + GP[spa, MVscalar[GP[spx, spb]]] - spc 

Out[100]= 

0+((b,x) <a> - <c> + alpha <x>)+i(0)+i(0) - 

Step 1. Form geometric product with spb and solve for b.x. 

In[101]:= 

lhsTimesb = GP[lhs, spb] 

Out[101]= 

-(b,c) + alpha (b,x) + (a,b) (b,x)+(0)+ 

i((b,x) <a>X<b> + <b>X<c> - alpha <b>X<x>)+i(0) 

In[102]:= 

bDotxEq=Solve[scalar[lhsTimesb]==0, dot[vec[b], vec[x]]] 

Out[102]= 
(b,c) 

{{(b,x) -> }} 
alpha + (a,b) 

Step 2. Plug b.x into lhs and solve for <x>. 

13 



In[103]:= 

soln = Solve[(vector[lhs] /. bDotxEq) == 0, vec[x]] 

Out[103]= 
(b,c) <a> - alpha <c> - (a,b) <c> 

{{<x> -> -( )}} 
2 

alpha + alpha (a,b) 

Collect and Simplify the term proportional to vec[c]. 

In[104]:= 
MapAt[Simplify[Collect[#l, vec[c]]] & , soln, {1, 1, 2}] 

Out[104]= 
(b,c) <a> <c> 

{{<x> -> -( ) + }} 
2 alpha 

alpha  + alpha (a,b) 

4.1.2 Hestenes 2-1 Exercises (1.4) 

Solve    alpha <x> + <x>.(i<B>) = <c>  for <x>. 

Get lhs of equation in multivector form.  Use dual form for the 

bivector, i.e., <B> is a vector and i<B> is the bivector. 

(Remember that <x>.Bivector is the vector part of 

GP[x,Bivector].) 

ln[105]:= 

spx = MakeMV[0, x, 0, 0]; spa = MakeMV[0, a, 0, 0]; 

In[107]:= 

spB = MakeMV[0, 0, B, 0]; spc = MakeMV[0, c, 0, 0]; 

ln[109]:= 

lhs = MVvector[alpha*spx + GP[spx, spB] - spc] 

Out[109]= 

0+(-<c> + alpha <x> + <B>X<x>)+i(0)+i(0) 

Step 1. Eliminate the BXx term.   N.b., this entails eliminating 

the B.x term that appears in GP with spB. 

14 



In[110]:= 

lhsTimesB = GP[lhs, spB] 

Out[110]= 

0+((B,x) <B> - (B,B) <x> - <B>X<c> + alpha <B>X<x>)+i(0)+ 

i(-(B,c) + alpha (B,x)) 

Use Thread and make the multivector head (i.e., MV) go to List: 

ln[lll]:= 

Thread[lhsTimesB == MV[0, 0, 0, 0], MV] /. MV -> List 

Out[111]= 

{True, (B,x) <B> - (B,B) <x> - <B>X<c> + alpha <B>X<x> == 0, 

True, -(B,c) + alpha (B,x) == 0} 

Solve the equations for <B>.<x> and <B>X<x>: 

ln[112]:= 

eeqs = Solve[Thread[lhsTimesB == MV[0, 0, 0, 0], MV] /. 

MV -> List,{dot[vec[B], vec[x]], vec[Cross[vec[B], vec[x]]]}] 

Out[112]= 
(B,c) 

{{(B,x) ->  , <B>X<x> -> 
alpha 

(B,c) <B>    ~((B,B) <x>) - <B>X<c> 
_{ }  }} 

2 alpha 
alpha 

Step 2.  Plug in <B>X<x> and <B>.<x> and solve for <x> = vec[x]. 

To get the bivector forms from the duals use: 

<c>.<B> <B> = -<c>.<B>i (i<B>) = -<c>A(i<B>)(i<B>) 

and <B>X<c> = -i <B>A<c> = -(i<B>).<c> 

ln[113]:= 
soln = Solve[vector[lhs] == 0 /. eeqs[[l]], vec[x]] 
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Out[113]= 
2 

. 

-((B ,c) <B>) - c ilpha  <c> + alpha <B>X<c> 
{{<x> >  ( 

alpha 
i • 
+ alpha (B,B) 

Invoke the function Simplify. 

ln[114]:= 
MapAt[Simplify , soln, {1, 1, 2}] 

Out[114]= 
0 

{{<x> 
(B,c) <B> + alpha 

3 
alpha  + 

<c> - alpha <B>X<c> 
 }} 

alpha (B,B) 

4.1.3 Hestenes 2-6 Exercises (6 .5) 

Describe the solution set of the simultaneous equations: 

<x>A(i<A>) = da and <x>A(i<B>) = db, 

where (i<A>)(i<B>)-( i<B>)(i<A>) -(<A><B>-i<B><A>) = -<A>X<E l> 

is not zero. (Actually Hestenes takes da = db = 0.) 

Define the bivectors (pseudovectors) for the problem: 

In[115]:= 

spA = = MakeMV[0 , 0, A, 0]; spB = MakeMV[0, 0, B, 0]; 

Expand the solution to be found in a basis set.  By assumption i 

<A>X<B> is not zero, thus, <A>, <B>, <A>X<B> span 3-space and any 

<x> can be expanded in the form 

ln[117]:= 

xtest = MakeMV [0, alpha*vec[A] + beta*vec[B] + 

gamma*'' /ec[Cross[vec[A], vec[B]]], 0, 0] 

Out[117]= 

0+(alpha <A> + beta <B> + < gamma <A>X<B>)+i(0)+i(0) 

The solution must satisfy the wedge product constraints, and 
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since (vector)A(bivector) is a pseudoscalar, we can obtain the 

values for alpha and beta via: 

In[118]:= 

constraints = MapAt[Simplify, 

Solve[{pseudoS[GP[xtest, spA]] == da, 

pseudoS[GP[xtest, spB]] == db}, {alpha, beta, gamma}], 

{{1, 1, 2}, {1, 2, 2}}] 

Out[118]= 
-(db (A,B)) + da (B,B) 

{{alpha -> / 
2 

-(A,B)  + (A,A) (B,B) 

db (A,A) - da (A,B) 
beta -> }} 

2 
-(A,B)  + (A,A) (B,B) 

Note that the constraints put no limits on gamma.  Thus, the 

solution is the line determined in parametric form as a function 

of gamma.  I.e., any gamma will satisfy the constraints, and the 

solution set corresponds with the straight line intersection of 

the planes determined by <x>A(i<A>) = da and <x>A(i<B>) = db. 

(The Simplify[Collect[... code is arrived at by experience or in 

the present case by trial and error.) 

In[119]:= 

solution = MapAt[Simplify[Collect[#l, 

vec[Cross[vec[A], vec[B]]]]] & , xtest /. constraints, {1, 2}] 

Out[119]= 

(-(db (A,B)) + da (B,B)) <A> 
{0+( + 

2 
-(A,B)  + (A,A) (B,B) 
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(db (A,A) - da (A,B)) <B> 
  + gamma <A>X<B>)+i(0)+i(0)} 

2 
-(A,B)  + (A,A) (B,B) 

Separate the terms that are proportional to da, db, and gamma: 

(The [[1]] gets the multivector out of the list.) 

In[120]:= 
soln = MapAt[MapAt[Together, 

Collect[#l, {da, db, gamma}], {{1}, {2}}] & , 

solution, {1, 2}][[1]] 

Out[120]= 

db ((A,B) <A> - (A,A) <B>) da ((B,B) <A> - (A,B) <B>) 
0+(  + + 

2 2 
(A,B)  - (A,A) (B,B) ~(A,B)  + (A,A) (B,B) 

gamma <A>X<B>)+i(0)+i(0) 

Check to see if constraints are satisfied: 

In[121]:= 

{pseudoS[GP[soln, spA]]==da, pseudoS[GP[soln, spB]]==db} 

0ut[121]= 

{True, True} 

Check to see if constraints were satisfied in the earlier form: 

In[122]:= 

{pseudoS[GP[solution[[1]], spA]] == da, 

pseudoS[GP[solution[[1]], spB]] == db} 

Out[122]= 

{True, True} 
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4.2 Rotation Operators in 3-Space 

4.2.1 Reflection in the (i<a>)-plane. 

Demonstrate that -<a><x> inverse[<a>] is <x> reflected in the 

(i<a>)-plane. 

In[123]:= 

spa = MakeMV[0, a, 0, 0]; spx = MakeMV[0, x, 0, 0]; 

ln[124]:= 

Apart /@ (-GP[spa, GP[spx, inverse[spa]]]) 

Out[124]= 

-2 (a,x) <a> 
0+(  + <x>)+i(0)+i(0) 

(a,a) 

In terms of unit normal <ahat> = <a>/a: 

In[125]:= 

Apart /@ (-GP[spa, GP[spx, inverse[spa]]]) /• 

vec[a] ->a*vec[ahat] /. dot[vec[ahat], vec[ahat]] -> 1 

Out[125]= 

0+(-2 (ahat,x) <ahat> + <x>)+i(0)+i(0) 

Since <x> = (<a>inverse[<a>])<x> 

= <a>(inverse[<a>].<x> + inverse[<a>]A<x>) 

= <a> <x>.inverse[<a>] -<a> <x>Ainverse[<a>], 

consider -<a> <x>Ainverse[<a>]: 

In[126]:= 

Apart /@ (-GP[spa, MVpseudoV[GP[spx, inverse[spa]]]]) 

Out[126]= 
(a,x) <a> 

0+(-( ) + <x>)+i(0)+i(0) 
(a,a) 

One sees that -<a> <x>Ainverse[<a>] is the component of <x> in 
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the (i<a>)-plane, and that <a> <x>.inverse[<a>] is the component 

of <x> along <a> (i.e., perpendicular to the (i<a>)-plane). 

In[127]:= 

Apart /@ (-GP[spa, GP[spa, MVpseudoV[GP[spx, 

inverse[spa]]]]]) 

Out[127]= 

0+(0)+i(<a>X<x>)+i(0) 

4.2.2 Two reflections are equivalent to a rotation. 

4.2.2.1 One can demonstrate that two reflections are equivalent 

to a rotation by "back of the envelope" constructions.  It may be 

seen that the rotation is through an angle twice that between the 

normals and about the line of intersection of the reflection 

planes. 

4.2.2.2 One can also use the package to demonstrate that two 

reflections are equivalent to a rotation for specific cases. 

Define a double reflection function: 

In[128]:= 

doubleR[a_, b_, spx_MV] := 

Module[{spa = MakeMV[0,a,0,0], spb = MakeMV[0,b,0,0], w}, 

CombineMVlist[ 

Apart /@ GP[GP[w = GP[spb, spa], spx], inverse[w]]]] 

4.2.2.3 Example: Let a = {0,0,1} and b = {Sin[th/2],0,Cos[th/2]} 

and operate on a general vector <{x,y,z}>.  (We use Expand with 

Trig->True to apply trigonometric identities.) 

In[129]:= 

spv = MakeMVfO, {x, y, z}, 0, 0]; 
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In[130]:= 

(ExpandAll[#l, Trig -> True] & ) /§ 

doubleR[{0, 0, 1}, {Sin[th/2], 0, Cos[th/2]}, spv] 

Out[130]= 

0+(<{x Cos[th] + z Sin[th], y, z Cos[th] - x Sin[th]}>)+ 

i(0)+i(0) 

4.2.3 The rotation operator is a spinor. 

4.2.3.1 The doubleR function could be written in the form 

<x> -> inverse[R] <x> R where R = <a><b>, a spinor, 

for reflections in the (i<a>)-plane followed by a reflection in 

the (i<b>)-plane.  The effect of R does not depend on the 

magnitude of <a> and <b>.  Without loss of generality, we treat 

the case that <a> and <b> are unit vectors and thus, 

inverse[R] = <b><a> = hermitean[<a><b>] = hermiteanfR] 

and R = <a><b> = (a,b) + i <a>X<b> 

= Cosftheta] + (i<w>) Sin[theta], 

where theta is the angle between the normal vectors, <a> and <b>, 

and <w> is a unit vector in the direction of <a>X<b>. 

4.2.3.2 Euler form of the rotation operator.  Write the spinor R 

in the form, R = alpha + i<beta>.  Then the Euler parameters, 

alpha = (a,b) and <beta> = <a>X<b>, define the rotation. 

4.2.3.3 The Euler parameters are not independent, since 

alpha2 + <beta><beta> = Cos[theta]2 +Sin[theta]2 = 1. 

4.2.3.3.1 E.g., Reflections in planes having a = {0,0,1} and 

b = {Sin[theta],0,Cos[theta]} yields Euler parameters 

alpha  = <a>.<b> = Cos[theta] and 
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<beta> = <a>X<b> = <{0,Sin[theta],0}>. 

In[131]:= 

ExpandAll[GP[MakeMV[0, {0, 0, 1}, 0, 0], 

MakeMV[0, {Sin[th/2], 0, Cos[th/2]}, 0, 0]], Trig -> True] 

Out[131]= 
th th 

Cos[ — ] + (0)+i(<{0, Sin[ —], 0}>)+i(0) 
2 2 

4.2.4 Exponential form of the rotation operator: Exponential 

function of bivector agument.  The expression 

R = Cos[theta] + (i<w>) Sin[theta], 

suggests that one might express R in the form R = Exp[i<theta>] 

with <theta> = theta <w>. 

4.2.4.1 Multivector power series for Exp[i<a>].  Cos and Sin of 

vector argument. 

4.2.4.1.1 A function to compute integer powers of multivectors. 

In[132]:= 

GPpower[a_MV, 1] := a 

ln[133]:= 

GPpower[a_MV, 0] := MV[1, 0, 0, 0] 

In[134]:= 

GPpower[a_MV,(n_Integer)?Positive]:=GP[a,GPpower[a,n-l]] 

4.2.4.1.2 First six terms in the power series for Exp[spa], 

where spa = i<a> and let <a>.<a> -> a2 and <a>->a <ahat>. 

In[135]:= 

spa = MV[0, 0, vecfa], 0]; 

In[136]:= 

(Collect[Expand[#l], vecfahat]] & ) /@ 
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(Sum[GPpower[MakeMV[0, 0, a, 0], i]/ü, {i, 0, 6}] /. 

{dot[vec[a], vec[a]] -> a~2, vec[a] -> a*vec[ahat]}) 

Out[136]= 
2   4   6 3   5 

a   a   a a   a 
!___+___  +(0)+i((a - -- +  ) <ahat>)+i(0) 

2    24   720 6    120 

4.2.4.1.3 First six terms of the power series for Cos and Sin for 

argument (la).  ComplexExpand treats arguments not explicitly 

complex as real, etc.) 

In[137]:= 

ComplexExpand[Normal[Exp[I*a] + 0[a]^7]] 
Out[137]= 

2 4    6           3    5 
a a   a          a   a 

!_ — + — -—- + I (a - -- + --") 
2 24   720          6    120 

4.2.4.1.4 Thus, Exp[i<a>] may be identified with a multivector 

having the form of a rotation operator: 

Exp[i<a>] = Cos[a] + (i<a>/a) Sin[a]. 

4.2.5 Exercise. Show that the power series for Exp[<a>] may be 

related to those for Sinh and Cosh. 

Does Exp[i<a>] Exp[<b>] = Exp[<b>] Exp[i<a>]? 

Does Exp[i<a>] Exp[i<b>] = Exp[i<b>] Exp[i<a>]? 

(Forms for Exp[m], where m is a general multivector, are useful 

in relativity theory (ref 3).) 

4.2.6 Rotation operators in exponential form: Exponential 

function for pseudoscalar argument. 

In[138]:= 

exp[MV[0, 0, b_, 0]] := 

Module[{bb = Sqrt[dot[b, b]], bbb, B = 0}, 
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bbb = bb /. Sqrt[(wa_)~2] :> wa; 

If[bbb != 0 !! !NumberQ[bbb], B += (b*Sin[bbb])/bbb]; 

MakeMV[Cos[bbb], 0, B, 0]] 

In[139]:= 

rotation[theta_] := 

exp[MakeMV[0, 0, theta/2, 0]] /. 

dot[vec[a_], vec[a_]] :> a~2 /. 

{Sqrt[(a_)~2] :> a, 1/Sqrt[(a_)~2] :> 1/a} 

4.2.6.1 E.g., rotation operator for a rotation thru Abs[theta] 

about the <theta> axis: 

ln[140]:= 

rotation[theta] 

Out[140]= 
theta 

Sin[ ] <theta> 
theta 2 

Cos[ ] + (0)+i( )+i(0) 
2 theta 

4.2.6.2 Rotation operator inverse check: 

In[141]:= 
rotation[th] - inverse[rotation[-th]] /. 

dot[vec[a_], vec[a_]] :> a^2 

Out[141]= 

0+(0)+i(0)+i(0) 

4.2.7 Identification of the Euler parameters {alpha,beta} of the 

rotation thru theta: 

In[142]:= 
erules = Thread[{alpha, 0, beta, 0} -> rotation[theta]/. 

MV -> 
List] 
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OUt'1421= theta 
Sin[ ] <theta> 

theta 2 
{alpha -> Cos[ ], 0 -> 0, beta ->     / T * 2 theta 

0 -> 0} 

4.2.7.1 E.g., rotation of {x,y,z} through theta about {1,0,0} 

axis, which is easily visualized, etc. 

In[143]:= 

Timing[Simplify /@ (Expand[vector[ 

GP[GP[ee = rotation[theta*{l,0,0}], MakeMV[0, {x, y, z}, 0, 0]], 

inverse[ee]]], Trig -> True] /. vec[a_] :> a)] 

Out[143]= 

{8.02 Second, {x, y Cos[theta] + z Sin[theta], 

z Cos[theta] - y Sin[theta]}} 

4.2.7.2 E.g.,rotation of {x,y,z} through th about axis {1,1,0} 

and turn it back.  (To see the turned vector, remove the 

semicolon.) 

In[144]:= 

rturned = MV[0, vec[(Collect[Simplify[#l],{x,y,z}]&) /@ 

(Expand[vector[ 

GP[GP[ee = rotation[(th*{l, 1, 0})/Sqrt[2]], 

MakeMV[0,{x,y,z},0,0]], inverse[ee]]], Trig -> True] /. 

vec[a_] :> a)      ], 0, 0]; 

Turn the rotated vector back: 

In[145]:= 

Timing[Simplify /@ 

(Expand[vector[GP[GP[inverse[ee],rturned], ee]], Trig -> True] / 
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vec[a_] :> a)       ] 

Out[145]= 

{95.9 Second, {x, y, z}} 

4.2.8 Composition of rotations: 

4.2.8.1 The Product of exponential forms: rotation(<thl>) 

followed by rotation(<th2>). 

To neaten up the notation, let dot[vec[a],vec[a]]->a2 and choose 

the positive branch of the Sqrt[a2]. 

In[146]:= 
rotProd = Apart /@ 

(GP[rotation[thl], rotation[th2]] /. 

{dot[vec[a_], vec[a_]] :> a~2} //. 

{Sqrt[(b_)~2] :> b, 1/Sqrt[(c_)A2] :> 1/c}  ) 

Out[146]= 
thl     th2 

(thl,th2) Sin[ ] Sin[ ] 
thl     th2 2       2 

Cos[ —] Cos[ —]  +(0)+i( 
2       2 thl th2 

th2     thl thl     th2 
th2 Cos[-~] Sin[ —] <thl> + thl Cos[ —] Sin[ —] <th2> 

2        2 2        2 

thl th2 

thl      th2 
Sin[ ] Sin[ ] <thl>X<th2> 

2        2 
 )+i(0) ' 

thl th2 

4.2.8.2 The expression is familiar in terms of unit vectors. 

I.e., Let <hati> = <thi>/Abs[thi]: 
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In[147]:= 
rotProd2 = MapAt[Expand[#1] & , rotProd / 

Out[147]= 

{vec[thl] -> thl*vec[hatl], 

vec[th2] -> vec[hat2]*th2}, {{1}, {3}}] 

thl     th2 thl     th2 
Cos[ —] Cos[---] - (hatl,hat2) Sin[ —] Sin[ — ] + (0)+i( 

2       2 2       2 

th2     thl thl     th2 
Cos[ —] Sin[ —] <hatl> + Cos[ —] Sin[ —] <hat2> - 

2       2 2       2 

thl     th2 
Sin[ —] Sin[ —] <hatl>X<hat2>)+i(0) 

2       2 

4.2.8.3 Special case. Rotations about the same axis: 

ln[148]:= JO . 
MapAt[Expand[#l, Trig -> True] & , rotProd2 /. 

hat2 -> hatl /. dot[vec[a_]/ vec[a_]] :> a~2 /. 

hatl-2 -> 1, {{1}, {3}}] 

Out[148]= 

thl  th2 thl  th2 
Cos[— + —] + (0)+i(Sin[— + —] <hatl>)+i(0) 

2     2 2     2 

4.2.8.4 Special case.  Rotation by Pi (reflection) about the x 

axis followed by same about y axis: 

In[149]:= 

pi=N[Pi];r2=Chop[GP[rotation[pi*{l,0/0}],rotation[pi*{0,l#0}]]] 

Out[150]= 

0+(0)+i(-<{0, 0, l.}>)+i(0) 

4.2.8.5 Special case.  Rotation by Pi/2 about the x axis followed 

by same about y axis.  Use CombineMVlist to do vector sums, etc. 

27 



In[151]:= 

CombineMVlist[GP[rotation[(pi*{l, 0, 0})/2]/ 

rotation[(pi*{0/ 1, 0})/2]]] 

Out[151]= 

0.5+(0)+i(<{0.5/ 0.5, -0.5}>)+i(0) 

I.e., Pi/2 about y followed by Pi/2 about x yields Pi/3 = 60 

degree rotation around {1,1,-1}. 

4.2.9 The Product of Euler spinor forms.  Euler spinor for 

composition of rotations expressed as (geometric) product Euler 

spinors.  A derivation of Hestenes (ref 1),  Eqns 3.28. 

In[152]:= 

Thread[MakeMV[alpha, 0, beta, 0] ==. 

GP[MakeMV[alphal,0,betal,0],MakeMV[alpha2, 0, beta2, 0]], MV] / 

MV -> List 

Out[152]= 

{alpha == alphal alpha2 - (betal,beta2), True, 

<beta> == alpha2 <betal> + alphal <beta2> - 

<betal>X<beta2>, True} 
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APPENDIX: THE PACKAGE 

(* MV is a package for performing operations in the 8-dimensional 
geometric algebra G(3). 

Author: Lawrence V. Meisel 
Version of November 1992. *) 

BeginPackage["LM*MV'"] 

(* usage statements for the exported functions. *) 
MakeMV::usage = 
"MakeMV[p0,p,q,q0] constructs a representation, \n 

MV[p0,vec[p],vec[q],q0], of\n 
pO + <p> + i<q> + i qO. \n 

The package recognizes that \n 
i. objects with the head MV are multivectors\n 
ii. objects with head vec are vectors.       \n 

\n 
See GP for forming geometric products of multivectors.  \n 
See scalar, vector, pseudoV, and pseudoS for\n 

selecting parts of multivectors.        \n 
See MVscalar, MVvector, MVpseudoV, and MVpseudoS for  \n 

creating MV with the selected multivector parts,    \n 
E.g. MVvector[MV[aO,a,b,bO]]->MV[0,a,0,0]." 

GP::usage = 
"GP[mvl,mv2] computes the geometric product of the\n 
multivectors mvl and mv2, which must have head MV.  \n 
Linear combinations use standard +, etc. \n 
E.g. GP[MakeMV[pO,0,q,0],mvl] + 3 GP[mv2,mv3] yields    \n 

the multivector: (pO + i<q>) mvl +3 mv2 mv3. \n 
See also MakeMV." 

listCombineMV::usage = 
"listCombineMV[mv] simplifies MV's having List-form vectors and 
pseudovectors." 

Cross::usage = "In G(3): a b = dot(a,b) + a/\\b \n 
\t\t\t dot(a,b) + i Cross[a,b]." 

dot::usage = "In G(3): a b = dot(a,b) + i Cross[a,b]." 

vec::usage = "vec[a] means that a is of type vec, i.e., vector." 

MV::usage = "MV[mv] means that mv is of type MV, \n 
\t \t \t i.e., a multivector." 

scalar::usage = 
"scalar[MV[a, b, c, d]] returns a, the scalar part\n 

of its multivector argument.\n 
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See also MakeMV and MVscalar" 

vector::usage = 
"vector[MV[a, b, c, d]] returns b, the vector part \n 

of its multivector argument. \n 

See also MakeMV and MVvector." 

pseudoV::usage = 
"pseudoV[MV[a, b, c, d]] returns c, the vector dual\n 
to the pseudovector part of its multivector argument.\n 

See also MakeMV and MVpseudoV." 

pseudoS::usage = 
"pseudoS[MV[a, b, c, d]] returns d, the pseudoscalar\n 

part of its multivector argument.\n 

See also MakeMV and MVpseudoS" 

MVscalar::usage = 
"MVscalar[MV[a, b, c, d]] returns MV[a,0,0,0] the pure\n 
scalar part of its multivector argument.\n 

See also MakeMV and scalar" 

MVvector::usage = 
"MVvector[MV[a, b, c, d]] returns MV[0,b,0,0] the pure 
vector part of its multivector argument. \n 

See also MakeMV and vector." 

MVpseudoV::usage = 
"MVpseudoV[MV[a, b, c, d]] returns MV[0,0,c,0], the    \n 
the pure pseudovector part of its multivector argument.\n 

See also MakeMV and pseudoV." 

MVpseudoS::usage = 
"MVpseudoS[MV[a, b, c, d]] returns d, the pure\n 
pseudoscalar part of its multivector argument.\n 

See also MakeMV and pseudoS." 

hermitean::usage = 
"hermitean[MV[aO,a,b,bO]] --> MV[aO, a, -b, -b0], \n 

i.e., hermitean[aO + <a> + i<b> + i b0] ->\n 
aO + <a> - i<b> - i bO.  \n 

See also spatialReversal, spatiallnversion, and MakeMV." 

spatialReversal::usage = 
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"spatialReversal[MV[aO,a,b,bO]] --> MV[aO, -a, -b, bO], \n 
i.e., hermitean[aO + <a> + i<b> + i bO] ->  \n 

aO - <a> - i<b> + i bO.   \n 

See also hermitean, spatiallnversion, and MakeMV." 

spatiallnversion::usage = 
"spatialInversion[MV[aO,a,b,bO]] --> MV[aO, -a, b, -bO], \n 

i.e., hermitean[aO + <a> + i<b> + i bO] -> \n 
aO - <a> + i<b> - i bO. \n 

See also hermitean, spatialReversal, and MakeMV." 

inverse::usage = "inverse[mv] returns the GP inverse of mv." 

rotation::usage = "rotation[<theta>] -> rotation mv w.r.t. 
theta." 

exp::usage = .        .   „ 
"exp[aO,a,A,AO]=exp[MakeMV[aO,a,A,AO]]=mv exponential function. 

Begin["'Private'"] 

MakeMV[pO_,p_,q_,qO_]:=MV[pO,vec[p],vec[q],qO] 

(* Define the data type vec for vectors and the duals of 
bivectors. 
*) 
vec[k_?NumberQ l_]:=k vec[l] 
vec[vec[a_]]:=vec[a] 
vec[a_+b_]:=vec[a]+vec[b] 
vec[a__vec c_]:=a c 
vec[-a_]:=-vec[a] 
vec/:vec[x_Cross y_]:=y vec[x] 
vec[0]=0; 
dot[a_,0]:=0;Cross[a_,0]:=0;dot[0,a_]:=0;Cross[0,a_]:=0; 

(* Properties of Gibbs cross products: *) 
Cross/:Cross[a_vec,vec[Cross[b_vec,c_vec]]]:= 

b dot[a,c]-c dot[a,b] 
Cross/:Cross[vec[Cross[a_vec,b_vec],c_vec]]:= 

b dot[a,c]-a dot[c,b] 
Cross/:Cross[a_vec,Cross[b_vec,c_vec]]:= 

b dot[a,c]-c dot[a,b] 
Cross/:Cross[Cross[a_vec,b_vec],c_vec]:= 

b dot[a,c]-a dot[c,b] 
Cross/:Cross[a_vec,b_vec]:=-Cross[b,a]/;!OrderedQ[{a,b}] 
Cross/:Cross[a_+w_,b_]:=Cross[a,b]+Cross[w,b] 
Cross/:Cross[a_,b_+w_]:=Cross[a,b]+Cross[a,w] 
Cross/:Cross[-a_,b_]:=-Cross[a,b] 
Cross/:Cross[a_,-b_]:=-Cross[a,b] 
Cross/:Cross[a_,a_]:=0 
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Cross/:Cross[w_ a_vec,b_]:=Cross[a,b]w 
Cross/:Cross[a_,w_ b_vec]:=Cross[a,b]w 

(*  Properties of Gibbs dot product and combinations 
of dot and cross.  *) 

dot/:dot[a_vec,b_vec]:=dot[b,a]/;!OrderedQ[{a,b}] 
dot/:dot[a_vec w_,b_]:=w dot[b,a] 
dot/:dot[a_,b_vec w_]:=w dot[b,a] 
dot/:dot[a_,b_+w_] := dot[b,a]+dot[a,w] 
dot/:dot[a_+w_,b_]:=dot[b,a]+dot[b,w] 
dot/:dot[-a_,b_]:=-dot[b,a] 
dot/:dot[a_,-b_]:=-dot[b,a] 
dot/:dot[a_vec,vec[Cross[b_vec,c_vec]]]:= 

Module[{u,v,w},{u,v/w}=Sort[{a,b,c}]; 
Signature[{a,b,c}] dot[u,vec[Cross[v,w]]]]/; 

!OrderedQ[{a/b/c}] 
dot/:dot[vec[Cross[b_vec,c_vec]],a_vec]:= 

dot[b,vec[Cross[c,a]]] 
dot[vec[Cross[a_vec,b_vec]],vec[Cross[A_vec,B_vec]]]: 

dot[a,A]dot[b,B]-dot[a,B]dot[A/b] 
dot[a_vec,vec[Cros s[b_vec,a_vec j]]:=0 
dot[a_vec,vec[Cross[a_vec,b_vec]]]:=0 

(* Define a function to apply to simplify all MV 
combinations. The present simplification choice 
allows one to simplify expressions involving 
Cos[x]~2+Sin[x]~2.  Note that this could be 
accomplished by setting Trig->True in ExpandAll, but 
that entails other transformations, which might be 
undesirable. *) 
regg[a_]:=Map[Factor[ExpandAll[#/. 

Cos[x_]~2:>(l-Sin[x]~2)]]&fa] 

(* Linear Combinations of MV's: *) 
MV/:MV[a_,b_,c_,d_]+MV[A_,B_,C_,D_] := 

MV[a+A,b+B,c+C,d+D]//regg; 
MV/:MV[a_/b_,c_/d_]-MV[A_/B_/C_,D_] := 

MV[a-A,b-B,c-C,d-D]//regg; 
MV/:w_*MV[a_,b_,c_,d_]:=MV[w a,w b,w c,w d]//regg; 

(* Derivatives of MV's: *) 
MV/:D[MV[a_,b_/c_,d_],1_]:= 

MV[D[a,l],D[b,l],D[c,l],D[d,l]]; 
vec/:D[vec[a_],l_]:=vec[D[a,l]]; 

(*  Geometric products. *) 
GP[MV[a_,0,0,0],MV[A_,B_,Q_,Q0_]]:= 

MV[a A,a B,a Q,a Q0]//regg; 
GP[MV[0,0,0,a_]/MV[A_,B_,Q_/Q0_]]:= 

MV[-a Q0,-a Q,a B,a A]//regg; 
GP[MV[0,b_,0/0],MV[A_,B_/Q_/Q0_]]:= 

MV[dot[b,B],A b-vec[Cross[b,Q]], 
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QO b+vec[Cross[b,B] ] ,dot[b,Q]]//regg; 
GP[MV[0/0/b_/0],MV[A_,B_,Q_,QO_]]:= 

GP[MV[0,0/0,l],GP[MV[0,b,0,0],MV[A/B,Q,QO]]]//regg; 
GP[MV[a_,b_,c_,d_],MV[A_,B_,Q_,QO_]]:= 

(GP[MV[a,0,0,0],MV[A,B,Q,QO]]+ 
GP[MV[0,b,0,0],MV[A,B,Q,QO]]+ 
GP[MV[0,0,c/0],MV[A,B,Q/QO]]+ 
GP[MV[0,0,0,d],MV[A,B,Q,QO]])//regg; 

(*  functions for selecting the parts of multivectors. *) 
scalar[MV[a_,b_,c_/d_]]:=a 
vector[MV[a_,b_,c_,d_]]:=b 
pseudoV[MV[a_,b_,c_,d_]]:=c 
pseudoS[MV[a_,b_,c_,d_]]:=d 

(*  functions for selecting pure multivector parts of 
general multivectors.  *) 
MVscalar[MV[a_,b_,c_,d_J] :=MakeMV[a,0,0,0] 
MVvector[MV[a_/b_,c_/d_]]:=MakeMV[0,b,0,0] 
MVpseudoV[MV[a_,b_,c_,d_]]:=MakeMV[0,0,c,0] 
MVpseudoS[MV[a_,b_,c_,d_]]:=MakeMV[0,0,0,d] 

(*  Involuntary transformations. *)■ 
hermitean[MV[aO_,a_,b_,bO_]]:=MV[aO,a,-b,-b0] 
spatialReversal[MV[aO_,a_,b_,bO_]]:=MV[aO,-a,-b,b0] 
spatialInversion[MV[aO_/a_/b_,bO_] ] :=MV[a0,-a,b,-b0] 

(♦Special code for processing list form vectors and 
pseudovectors.  *) 
Cross[vec[a_List],vec[b_List]]:=CROSS[a,b] 
Cross[a_List,b_List]:=CROSS[a,b] 
CROSS[{a_/b_,c_},{A_,B_,C_}]:={b C-c B,c A-a C,a B-b A} 
dot[vec[a_List],vec[b_List]]:=a.b 
dot[l_List,m_List]:=1.m 
vec[k__ l_List]:=k vec[l] 
vec[{0,0/0}]=0; 
listCombineMV=MakeMV[Expand[scalar[#]], 

Expand[vector[#]/.vec[a_j:>a], 
Expand[pseudoV[#]/.vec[a_]:>a], 
Expand[pseudoS[#]]  ]&; 

(*  formatting scheme for multivectors:  *) 
Format[vec[a_]]:=SeguenceForm["<",a,">"] 
Format[dot[vec[a_J ,vec[b_]]]; = 

SequenceForm["(",a,",",b,")"] 
Format[Cross[a_vec,b_vec]]:=SequenceForm[a,"X",b] 
Format[vec[Cross[a_vec,b_vec]]]:= 

SequenceForm[a,"X",b] 
Format[MV[aO_,a_/b_,bO_]]:= 

SequenceForm[aO,"+(",a,")+i(",b,")+i(",b0,")"] 

(*  Inverses. *) 
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inverse[MV[a0_,0,0,c0_]]:=l/(a0-2+c0~2)MV[a0,0,0,-c0] 
(* inverse[MV[aO_,0,0,0]]:=MakeMV[l/aO,0,0,0] 
inverse[MV[0,0,0,cO_]]:=MakeMV[0,0,0,-1/cO] *) 
inverse[x_MV]:=Module[{rx=spatialReversal[x]}, 

(* Include Chop to eliminate vestigial non-zero 
vector and bivector parts in numerical cases.*) 

GP[inverse[Chop[GP[x,rx]]],rx]  ] 

(* Exponential functions and the rotation operator in R(3). *) 
exp[aO_,a_,b_,bO_]:=exp[MV[aO,vec[a],vec[b],bO]] 

exp[MV[aO ,0,0,b0_]]:= ,,_«,,, 
GP[MV[Exp[a0],0,0,0],MV[Cos[b0],0,0,Sin[b0]]] 

exp[MV[0,b_/0,0]]:= 
Module[{bb=Sqrt[dot[ b, b ] ],bbb,B= 0}, 

bbb=bb/.dot[vec[aa_],vec[aa_]]:>aa^2 
/.Sqrt[wa_^2]:>wa; 

If[bbb !=0l j!NumberQ[bbb],B+=b Sinh[bbb]/bbb]; 
MakeMV[Cosh[bbb],8,0,0]] 

exp[MV[0,0,b_,0]]:= 
Module[{bb=Sqrt[dot[b,b]],bbb,B=0} , 

bbb=bb/ . dot [ vec [ aa_], vec [ aa_] ] : >aa/S2 
/.Sqrt[wa_^2]:>wa; 

If[bbb !=0!!!NumberQ[bbb],B+=b Sin[bbb]/bbb]; 
MakeMV[Cos[bbb],0,B,0]] 

rotation[theta_]:=exp[MakeMV[0,0,theta/2,0]]/. 
dot[vec[a_],vec[a_]]:>a^2 /. 
{Sqrt[a_^2]:>a,l/Sqrt[a_^2]:>l/a} 

exp[MV[a0 ,a ,b_,b0_]]:= . r.nl11 GP[GP[GP[MV[Exp[a0],0,0,0],MV[Cos[b0],0,0,Sin[b0]]], 
exp[MV[0,a,0,0]]],exp[MV[0,0,b,0]]] 

End[] (* end private context  *) 

EndPackage[]  (* end package context *) 
/ 
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